Generalized Laurent polynomial rings as quantum projective 3-spaces
نویسندگان
چکیده
منابع مشابه
Generalized Laurent Polynomial Rings as Quantum Projective 3-spaces
Given a ring R, we introduce the notion of a generalized Laurent polynomial ring over R. This class includes the generalized Weyl algebras. We show that these rings inherit many properties from the ground ring R. This construction is then used to create two new families of quadratic global dimension four Artin-Schelter regular algebras. We show that in most cases the second family has a finite ...
متن کاملProjecttve Modules over Laurent Polynomial Rings
Quillen's solution of Serre's problem is extended to Laurent polynomial rings. An example is given of a A[T, r~']-module P which is not extended even though A is regular and Pm is extended for all maximal ideals m of A. The object of this note is to present several comments and examples related to some problems suggested by Quillen's recent solution of Serre's problem [7]. It is an immediate co...
متن کاملPrime Radicals of Skew Laurent Polynomial Rings
Let R be a ring with an automorphism σ. An ideal I of R is σ-ideal of R if σ(I) = I. A proper ideal P of R is σ-prime ideal of R if P is a σ-ideal of R and for σ-ideals I and J of R, IJ ⊆ P implies that I ⊆ P or J ⊆ P . A proper ideal Q of R is σ-semiprime ideal of Q if Q is a σ-ideal and for a σ-ideal I of R, I2 ⊆ Q implies that I ⊆ Q. The σ-prime radical is defined by the intersection of all ...
متن کاملOn modules over Laurent polynomial rings
A finitely generated Λ = Z[t, t]-module without Z-torsion is determined by a pair of sub-lattices of Λ. Their indices are the absolute values of the leading and trailing coefficients of the order of the module. This description has applications in knot theory. MSC 2010: Primary 13E05, 57M25.
متن کاملOn the computation of graded components of Laurent polynomial rings
In this paper, we present several algorithms for dealing with graded components of Laurent polynomial rings. To be more precise, let S be the Laurent polynomial ring k[x1, . . . , xr, x ±1 r+1, . . . , x ±1 n ], k algebraicaly closed field of characteristic 0. We define the multigrading of S by an arbitrary finitely generated abelian group A. We construct a set of fans compatible with the multi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2006
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2005.10.027